Quantos lados tem um polígono regular cujos ângulos externos medem 170º cada um?

Entre os elementos de um polígono, estão os lados, vértices, ângulos internos e ângulos externos. Quando o polígono é convexo, também podemos pensar nas suas diagonais e criar propriedades como a soma de seus ângulos internos e a soma de seus ângulos externos. Essa última propriedade deve sempre ser igual a 360°, em todo polígono convexo. Isso é resultado da definição dos ângulos externos, aliada a algumas propriedades envolvendo ângulos que serão discutidas mais adiante.

A soma dos ângulos internos varia de polígono a polígono, dependendo de seu número de lados. Assim, desde que convexos, os polígonos:

a) Que possuem três lados têm soma dos ângulos internos igual a 180°;

b) Que possuem quatro lados têm a soma dos ângulos internos igual a 360°;

c) Que possuem n lados têm a soma dos ângulos internos igual a (n – 2)180.

Definição de ângulo externo

Um ângulo externo é a abertura entre o prolongamento de um lado de um polígono e o lado adjacente a ele. Observe, por exemplo, os ângulos externos da figura a seguir:

Quantos lados tem um polígono regular cujos ângulos externos medem 170º cada um?

Os ângulos assinalados com as letras gregas α, β, γ, δ e ε são externos, pois representam justamente a abertura entre um lado do polígono e o prolongamento do lado adjacente a ele.

Propriedades relacionando ângulos externos e ângulos internos

Perceba que sempre existe um ângulo interno que compartilha um lado de um polígono com um ângulo externo. Observe também que esses dois ângulos estão sempre sobre a mesma reta, já que o ângulo externo depende do prolongamento do lado do polígono. Dessa forma, garantimos que a soma de um ângulo interno com o ângulo externo adjacente a ele é igual a 180°. Em outras palavras:

Não pare agora... Tem mais depois da publicidade ;)

Um ângulo interno e o ângulo externo adjacente a ele sempre são suplementares.

 

Quantos lados tem um polígono regular cujos ângulos externos medem 170º cada um?

No pentágono regular acima, temos um ângulo interno e um externo. Como o pentágono é regular, cada um de seus ângulos internos mede 108°. Assim sendo, cada um de seus ângulos externos medirá 72°.

Observe que existem exatos cinco ângulos externos nesse polígono, e que todos medem 72° porque o polígono é regular.

5·72 = 360°

Demonstração

Independentemente de qual seja o polígono convexo e sua quantidade de lados, ou do fato de todos os lados possuírem medidas diferentes, cada ângulo interno (Si), somado ao seu ângulo externo adjacente (Ai), deve ter como resultado 180°:

Si + Ai = 180°

Seja S a soma de todos os ângulos internos e A a soma de todos os ângulos externos, em um polígono de n lados, temos também n ângulos internos e n ângulos externos. Assim:

S + A = 180·n

A soma dos ângulos internos nós já conhecemos, pois ela é obtida pela expressão: S = (n – 2)180. Substituindo S por essa expressão na equação anterior, temos:

S + A = 180n

(n – 2)180 + A = 180n

180n – 360 + A = 180n

Como queremos descobrir a soma dos ângulos externos de um polígono, isolaremos a incógnita A no primeiro membro:

180n – 360 + A = 180n

A = 180n + 360 – 180n

A = 360°

Portanto, fica demonstrado que a soma dos ângulos externos de um polígono convexo é sempre igual a 360°.

5

Ângulo externo em polígonos regulares

Como visto anteriormente, em qualquer polígono convexo, a soma dos ângulos externos é $360^{\circ}$.

Um polígono de $n$ lados possui $n$ ângulos externos; se ele for regular, todos estes ângulos possuem a mesma medida. Portanto, o ângulo externo em um polígono regular pode ser calculado como:

$$a_e = \dfrac{360^{\circ}}{n}$$

É uma relação direta e rápida, que facilita o resolvimento de muitos exercícios.

Câmera Sony A6600

Faça vídeos e fotos com altíssima qualidade. Preferida por vloggers.

Ver na Amazon

5.1

Exemplo: ângulos externos de um octógono regular

Um octógono regular possui $8$ lados; o seu ângulo externo será:

\begin{align}
a_e &= \dfrac{360}{n} \\
a_e &= \dfrac{360}{8} \\
a_e &= 45^{\circ}
\end{align}

5.2

Exemplo: determinar o número de lados

Um polígono regular possui ângulos externos que medem $20^{\circ}$. Iremos identificar que polígono é este.

Como o polígono é regular, podemos usar a seguinte fórmula

$$a_e = \dfrac{360}{n},$$

substituindo $a_e = 20$:

\begin{align}
20 &= \dfrac{360}{n} \\
20 n &= 360 \\
n &= \dfrac{360}{20} \\
n & = 18
\end{align}

Este polígono possui $18$ lados, é o decaoctógono.


Obs.: determinar o número de lados através do ângulo externo é muito mais rápido; compare com as contas que fizemos para determinar o número de lados usando o ângulo interno.

5.3

Ângulo interno e ângulo externo de polígonos regulares

Num polígono regular, um ângulo interno é o dobro do ângulo externo. Quantos lados tem esse polígono?

Primeiro, usando a fórmula da Soma dos ângulos internos de um polígono:

\begin{align}
S_{i} &= (n – 2) \cdot 180^{o}
\end{align}

Podemos escrever que

\begin{align}
a_{i} &= \large \frac {S_{i}}{n}
\end{align}

E ainda, usando a fórmula da Soma dos ângulos externos de um polígono:

\begin{align}
S_{e} &= 360^{o}
\end{align}

Podemos escrever que

\begin{align}
a_{e} &= \large \frac {S_{e}}{n}
\end{align}

Agora, dado que $a_{i} = 2 \cdot a_{e}$,

\begin{align}
\large \frac {S_{i}}{n} &= 2 \cdot \large \frac {S_{e}}{n} \\ \\
\large \frac {(n – 2) \cdot 180^{o}}{n} &= 2 \cdot \large \frac{360^{o}}{n} \\ \\
180n – 360 &= 720 \\ \\
n&=6
\end{align}

Logo, o polígono é um hexágono.

Quantos lados tem um polígono regular cujo ângulo interno mede 170?

n = 36. Portanto, o polígono regular que possui ângulos internos iguais a 170° é aquele que possui 36 lados.

Quanto mede cada ângulo externo de um polígono de 170 graus?

Resposta verificada por especialistas a) Cada ângulo externos desse polígono de 36 lados mede 10°. b) Os ângulos internos desse polígono medem 170°.

Qual o número de lados de um polígono regular que tem a medida do ângulo externo igual a 12?

A resposta é 30 lados, porém preciso da resolução! Urgente.

Quantos lados tem um polígono regular cujo?

Soma dos Ângulos Internos de um Polígono Regular.