Como é a estrutura da proteína?

As proteínas desempenham diversas funções no organismo humano, sendo que estas funções estão relacionadas com a estrutura das proteínas. É importante saber, ainda, que estas macromoléculas podem sofrer um processo chamado desnaturação das proteínas.

As proteínas diferem entre si pelo número, tipo e sequência dos aminoácidos em suas estruturas. A sequência linear de aminoácidos de uma proteína define sua estrutura primária. O número de aminoácidos é muito variável de uma proteína para outra:

• Insulina bovina: 51 aminoácidos
• Hemoglobina humana: 574 aminoácidos
• Desidrogenase glutâmica: 8 300 aminoácidos

Como é a estrutura da proteína?

O filamento de aminoácidos se enrola ao redor de um eixo, formando uma escada helicoidal chamada alfa-hélice. É uma estrutura estável, cujas voltas são mantidas por pontes de hidrogênio. Tal estrutura helicoidal é a estrutura secundária da proteína.

Como é a estrutura da proteína?

As proteínas estabelecem outros tipos de ligações entre suas partes. Com isto, dobram sobre si mesmas, adquirindo uma configuração espacial tridimensional chamada estrutura terciária. Essa configuração pode ser filamentar como no colágeno, ou globular, como nas enzimas.

Tanto o estabelecimento de pontes de hidrogênio como o de outros tipos de ligações dependem da sequência de aminoácidos que compõem a proteína. Uma alteração na sequência de aminoácidos (estrutura primária) implica em alterações nas estruturas secundária e terciária da proteína.

Como é a estrutura da proteína?

Como a função de uma proteína se relaciona com sua forma espacial, também será alterada. Um exemplo clássico é a anemia falciforme. Nessa doença hereditária, há uma troca na cadeia de aminoácidos da hemoglobina (substituição de um ácido glutâmico por uma valina). Isto acaba por determinar mudanças na hemácia, célula que contém a hemoglobina, que assume o formato de foice quando submetida a baixas concentrações de oxigênio.

Como é a estrutura da proteína?

Muitas proteínas são formadas pela associação de dois ou mais polipeptídeos (cadeias de aminoácidos). A maneira como estas cadeias se associam constitui a estrutura quaternária dessas proteínas. A hemoglobina, citada anteriormente, é formada pela união de duas cadeias “alfa” e duas cadeias “beta”.

Embora o termo ponte de hidrogênio não seja adequado, ele é comumente empregado na bioquímica de proteínas. Quimicamente, este tipo de interação deveria ser chamado de ligação de hidrogênio, ao invés de ponte de hidrogênio.

Transcrição de vídeo

RKA4G Já passamos muito tempo falando sobre proteínas e sobre como elas resultam em uma enorme diversidade de sistemas biológicos, atuando como hormônios, como anticorpos, fornecendo estrutura a células, mecanismos de sinalização, toda uma série de coisas. E sua capacidade de fazer todas essas coisas em sistemas vivos se dá devido à sua estrutura. Então, neste vídeo, nós vamos falar sobre a estrutura das proteínas. Para podermos apreciar em alto nível as estruturas proteicas, temos aqui uma molécula de hemoglobina. Esta molécula é composta por quatro cadeias polipeptídicas. Duas dessas cadeias são compostas por 141 aminoácidos cada, ao passo que as outras duas são compostas por 146 aminoácidos, totalizando 574 aminoácidos. Note que os aminoácidos não se dispõem em uma ordem aleatória, mas sim em uma configuração específica que a torna apropriada para desempenhar sua função, isto é, transportar o oxigênio no interior das hemácias. Então, assim como a hemoglobina, há muitos outros tipos de proteínas que assumem diferentes funções conforme a sua estrutura. Como elas obtêm sua estrutura? Uma maneira de se pensar é que há diferentes níveis estruturais. O primeiro nível estrutural podemos chamar de estrutura primária. A estrutura primária consiste, simplesmente, na sequência de aminoácidos determinada pela ordem de ligação dos aminoácidos transportados pelo RNA transportador até os ribossomos, após este ler o RNA mensageiro, que carrega informação traduzida do DNA. Assim, a informação contida no DNA é o que, essencialmente, codifica a estrutura primária, pois é ela que determina a ordem dos aminoácidos, ou seja, a estrutura primária é dada em função da sequência de aminoácidos. O segundo nível estrutural, isto é, a estrutura secundária, ocorre devido a interações entre segmentos dessa cadeia polipeptídica, segmentos que são próximos entre si. Isto é, eles são adjacentes. Tenho alguns exemplos, bem aqui, onde podemos observar um fragmento de cadeia polipeptídica à esquerda. Temos um grupo de aminoácidos ligados entre si por ligações peptídicas, isto é, entre a carbonila e o nitrogênio, entre o ácido carboxílico e o agrupamento amina. Como aqui, por exemplo, aqui e aqui, também. De modo semelhante, temos um outro fragmento de cadeia polipeptídica ao lado, também com ligações peptídicas, como aqui, aqui e aqui, também. Note que, entre esses dois fragmentos de cadeia, ocorre a aproximação de um hidrogênio pertencente a uma cadeia, ao oxigênio pertencente a outra cadeia. Uma vez que o hidrogênio apresenta uma densidade eletrônica positiva em relação à densidade eletrônica do oxigênio, formam-se forças de atração intermoleculares conhecidas por ligações de hidrogênio isto é, ligações formadas entre oxigênio e o nitrogênio, que compartilham entre si um hidrogênio. Assim, temos uma ligação de hidrogênio aqui, temos outra ligação aqui, temos outra ligação de hidrogênio aqui. Desta forma, os dois fragmentos de cadeias, ligados um ao outro por ligações de hidrogênio, podem assumir também um formato mais plano, conhecido como lâmina β-pregueada (beta). Agora, note que na dupla de fragmentos desenhados à esquerda, em uma das cadeias, temos a seguinte sequência, de cima para baixo: um carbono alfa, uma carbonila e um nitrogênio. Novamente, um carbono alfa, uma carbonila e um nitrogênio; carbono alfa, carbonila e nitrogênio e assim sucessivamente. E o mesmo acontece na outra cadeia: carbono alfa, carbonila, nitrogênio, carbono alfa, carbonila, nitrogênio, carbono alfa, carbonila, nitrogênio. Chamamos essa configuração de sequência paralela, porque o carbono alfa, carbonila e nitrogênio ocorrem na mesma ordem, em ambas as cadeias. Note, agora, que na dupla de fragmentos ao lado temos, no primeiro fragmento, a mesma sequência anterior, de cima para baixo: carbono alfa, carbonila e nitrogênio, carbono alfa, carbonila e nitrogênio, carbono alfa, carbonila e nitrogênio. Porém, se observamos o fragmento ligante ao lado, vemos que, de cima para baixo, a sequência é invertida. Temos, aqui, o carbono alfa, nitrogênio, carbonila carbono alfa, nitrogênio, carbonila, carbono alfa, nitrogênio, carbonila. Uma vez que um fragmento apresenta sequência oposta ao outro fragmento, chamamos essa configuração de sequência antiparalela. Perceba que ambas as duplas de fragmentos são semelhantes. No caso aqui representado, ambas interagem por ligações de hidrogênio, são compostos pelas mesmas moléculas, mas diferem em sua sequência, sendo um par de fragmentos paralelo e outro par de fragmentos antiparalelo. O primeiro, como já vimos, configura a forma de lâmina β-pregueada; o segundo, por sua vez, apresenta relações e densidades eletrônicas entre as ligações de hidrogênio e os átomos adjacentes que se alternam ao longo da cadeia. Veja, bem aqui, essa alternância, diferente do par de fragmentos que configura uma lâmina β-pregueada. Observe, aqui, o nitrogênio; ligação de hidrogênio, nitrogênio, novamente, nitrogênio, ligação de hidrogênio, nitrogênio. Note que a alternância observada no segundo par de fragmentos ocorre pois, nesse fragmento, o primeiro carbono alfa é anterior ao lado de densidade eletrônica positiva em relação à ligação de hidrogênio subsequente, relação que, por sua vez, é oposta à do carbono alfa seguinte, mais próximo da densidade eletrônica negativa da ligação de hidrogênio subsequente. Portanto, os fragmentos antiparalelos acabam por assumir uma forma semelhante a esta à direita, em espiral, conhecida como forma de α-hélice (alfa). Esse arranjo em espiral, representado na figura à direita, configura ligações de hidrogênio em direção perpendicular à extensão da cadeia, diferente do que ocorre no arranjo de lâmina β-pregueada, no qual as ligações de hidrogênio são coplanares às extensões das cadeias envolvidas. Mas nós ainda não estamos satisfeitos, porque você poderia imaginar que essas cadeias laterais têm algo a dizer. Tais cadeias podem ser hidrofóbicas, interagindo entre si de formas diferentes quando imersas em água. Elas também poderiam interagir com outras cadeias ou poderiam, ainda, formar ligações de sulfeto. Enfim, tais fenômenos nós veremos com mais detalhes em um vídeo futuro. Agora, voltando. O terceiro nível estrutural, ou estrutura terciária ocorre devido a interações entre diferentes fragmentos ou segmentos, desde que a estrutura secundária já esteja conformada que sejam distantes entre si. Tomemos, por exemplo, esse fragmento de estrutura secundária. Vamos supor que nosso polipeptídeo está imerso em água e, esse trecho contém várias partes que são hidrofóbicas, aqui representadas por esses radicais "R". Assim, as interações hidrofóbicas farão com que a cadeia se deforme de uma determinada maneira específica, conforme os elementos que a compõem. Ou podemos supor, também, que há ligantes diferentes ao longo da extensão dessa cadeia, que podem formar entre si ligações de hidrogênio ou até mesmo ligações iônicas, moldando esse complexo polipeptídeo de uma forma diferente. Desta forma, um único polipeptídeo é constituído apenas por sua estrutura primária, sua estrutura secundária, sua estrutura terciária. Uma determinando a outra subsequentemente. Porém, se estamos lidando com uma proteína mais complexa como a hemoglobina, que é constituída por mais um polipeptídeo, então temos de falar no quarto nível estrutural ou na estrutura quaternária, por sua vez, determinada pela interação entre duas ou mais cadeias polipeptídicas. Isto é, a estrutura quaternária ocorre quando duas ou mais cadeias peptídicas interagem entre si, formando um complexo polipeptídico maior. No caso da hemoglobina, por exemplo, temos quatro subunidades, isto é, quatro cadeias peptídicas interagindo entre si. Assim, esperamos que isso lhe interesse, porque é algo fascinante. Há tantas permutações possíveis entre os quatro níveis de formação proteica, que podemos até construir proteínas. Podemos, se entendermos melhor, ser capazes de traduzir as estruturas primárias e descobrir como as proteínas realmente funcionam, o que elas fazem, como podem ser corrigidas, como podem oferecer outras funções, entre diversas outras coisas. Por isso, esse é um campo fascinante de estudo.