Como ocorre um impulso nervoso qual região do neurônio recebe o impulso nervoso?

As membranas dos neurônios tem a propriedade de condução nervosa. Esse evento é gerado devido ao fluxo de íons entre o espaço extracelular e intracelular. Portanto, o potencial de membrana é uma energia conservativa que permite a excitabilidade e condução do impulso nervoso gerado pelo fluxo constante de íons entre os fluidos celulares. 

O potencial de membrana pode ser classificado em dois tipos: Potencial de Repouso e Potencial de ação. O potencial de membrana está em repouso quando não há condução do impulso nervoso, pois o gradiente eletroquímico no interior da célula é mantido constante. Entretanto, qualquer estímulo externo (elétrico, químico ou mecânico) atuar sobre as proteínas canais (gated channels) há alteração na conformação estrutural dessas proteínas e a passagem de eletrólitos que alteram a distribuição elétrica dentro e fora da célula. Este evento gera uma diferença de potencial (ddp) e, consequentemente, promove a passagem da corrente elétrica por meio de íons. Se o estímulo for elevado o suficiente para ultrapassar o limiar (threshold) de voltagem da célula (-55 mV) é gerado o potencial de ação e o impulso nervoso é conduzido ao longo de todo o neurônio.

Como ocorre um impulso nervoso qual região do neurônio recebe o impulso nervoso?

O potencial de ação (PA) é o momento em que há condução do impulso nervoso pela membrana do neurônio devido ao desequilíbrio eletrolítico entre o espaço extracelular e intracelular. O PA é uma propriedade físico-química de células excitáveis como os neurônios. São eles que garantem a sua peculiaridade de transmissão de informação. Portanto, a biogênese do PA é um fenômeno muito estudado no campo da Neurociência.

Durante o potencial de ação há ativação das proteínas canais de comportas fechadas (gated channels). Elas são ativadas por meio de estímulos químicos (neurotransmissores), elétricos (diferença de voltagem) e choques mecânicos. Quando os neurônios sofrem qualquer estímulo externo há a abertura de canais iônicos que permitem o fluxo constante de íons. O potencial de ação é caracterizado pela presença de três fases fundamentais: fase de despolarização da membrana (raising phase),fase de repolarização (falling phase) e fase de hiperpolarização (hyperpolarization phase).

Despolarização ou Raising phase: é a primeira fase do potencial de ação. É gerada pela abertura dos canais iônicos (gated channels) de Na+. O Na+ é um eletrólito que está em maior concentração fora da célula. A abertura de canais de Na+ favorecem o influxo desse íon e aumento da voltagem no espaço intracelular que deixa de ser negativa e passa a ser positiva promovendo a despolarização da célula. À medida que ocorre o influxo de Na+, a célula fica mais despolarizada (carrega positivamente em seu interior) e mais canais voltagem dependentes de Na+ são abertos. Promovendo ainda mais o influxo desse íon para gerar o potencial de ação.

Repolarização ou Falling phase: nesta fase há fechamento dos canais iônicos de Na+ e abertura do s canais de K+. O efluxo de partículas positivas reduz a polaridade, portanto a célula volta a ficar negativa nesta etapa. Entretanto, não volta ao potencial inicial de -60 a -70 mV. Após a falling phase há saída excessiva de K+ que caracteriza outra etapa chamada hiperpolarização onde ocorre o período refratário.

Hiperpolarização: nesta etapa a o efluxo excessivo de K+ . Essa fase é responsável por estabelecer o período refratário, momento em que a membrana do neurônio permanecer inexcitável, portanto não sendo capaz de gerar PAs.

Para que o potencial de ação seja gerado é necessário atingir o limiar ou o threshold, também conhecido como lei do tudo ou nada. O limiar para gerar um potencial de ação é de -55mV. A todo instante os dendritos e o corpo celular de um único neurônio recebe potenciais pós-sinápticos excitatórios e inibitórios ao mesmo tempo provenientes de outros neurônios. Se a soma das energias geradas pelos potenciais pós-sinápticos excitatórios e inibitórios que chegam no corpo celular for menor que o threshold, o potencial de ação não será gerado. No entanto, se a energia necessária atingir o limiar, independentemente da sua intensidade, o potencial de ação será gerado em uma região entre o corpo celular e o axônio denominado de cone de implantação (ou zona de gatilho).

Referências

Roberto Lente. Cem bilhões de neurônios. Conceitos Fundamentais de neurociência. Kandel. Princípios da Neurociência

Eric R. Kandel, James H. Schwartz, Thomas M. Jessell, Steven A. Siegelbaum, A. J. Hudspeth. Princípios de Neurociências. 5 edição.

The content published here is the exclusive responsibility of the authors.

O neurônio e o sistema nervoso

Introdução aos neurônios e à glia. Como a estrutura de um neurônio permite que ele receba e transmita informações.

O neurônio e o sistema nervoso

O conteúdo de Biologia foi criado com o apoio da Fundação Amgen

Qual parte do neurônio recebe o impulso nervoso?

Dendritos: são extensões da célula através das quais ela recebe os impulsos nervosos advindos de outras células nervosas.

Onde ocorre o impulso nervoso?

A transmissão do impulso nervoso é um fenômeno eletroquímico que ocorre nas células nervosas e faz o sistema nervoso funcionar. É o resultado das mudanças das cargas elétricas na membrana dos neurônios, células especializadas no processamento de informações.

Como ocorre o impulso nervoso pelos neurônios?

Como ocorre o impulso nervoso? O impulso nervoso inicia-se quando o neurônio sofre um estímulo suficientemente forte para desencadeá-lo. Isso acontece quando uma membrana está em potencial de repouso, uma condição em que a superfície interna da membrana possui carga negativa em relação à superfície externa.